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ABSTRACT: This work aims at the study of the dynamic fracture of an elastic material
in the framework of the configurational mechanics. The analysis is based on the global
balances for the physical and configurational fields. Thus, the concept of the balance
law for an elastic fractured body, in Euclidean and material space, is treated in detail. In
the spirit of modern continuum mechanics, a rigorous localization process is proposed.
This procedure provides the equations in Euclidean and material space as well as the new
contributions for the configurational forces and moments at the crack tip. In addition, it
facilitates the derivation of the relationship between the energy release rate (or the rota-
tional release rate) and the configurational force (or the configurational moment). The
results are compared with the corresponding ones of fracture mechanics and some new
interpretations are discussed.

1 INTRODUCTION

The propagation of a crack of any curvature in a deformable body is a complex phe-
nomenon because apart from the dynamics of the elastic motion, the evolution of the
crack must be accounted for, too. The evolution of the crack takes place, not in the phys-
ical space, but within the material body, that is, the material space. Thus, we believe that
configurational mechanics (Maugin 1993, 1995; Gurtin 2000) should be the appropriate
framework in which this problem can be efficiently studied.

To this scope, we start with the global balance laws as it is used to do in any other
problem in continuum mechanics. More specifically, we consider an elastic body with a
propagating crack in its interior and postulate the balances for all relevant fields, included
the configurational ones, for any arbitrary part of the body (Agiasofitou and Kalpakides
2003). In the presence of the crack, this procedure becomes much more complicated be-
cause of two reasons. Firstly, the involved fields are not continuous across the crack, even
more, they may have a singularity at the crack tip and second, the underlying kinematics is
more complicated due to the presence of the separate crack kinematics. In particular, the
singularities at the crack tip make necessary to reformulate the transport and divergence
theorems, which are indispensable for any localization process.

In literature, such a view can be found in the work of (Steinmann 2000) who pre-
sented balance laws in both the physical and material space for elastostatics of a smooth
elastic body. Also, reports to equations, which can be considered as balance laws for a
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fractured body, appeared in (Maugin 1993, 1995; Dascalu and Maugin 1995; Gurtin and
Podio-Guidugli 1996; Gurtin 2000; Kienzler and Herrmann 2000) but, to the best of our
knowledge, up to now there is not a complete and consistent analysis in the spirit of mod-
ern continuum mechanics.

The global view adopted in this paper can shed light on the relationship between the
configurational fields at the crack tip and the energy release rates as well as the connection
between the first ones and the J and L integrals. For instance, starting from the pseudomo-
mentum and energy equations, one can establish a connection between the energy release
rate and the configurational force at the crack tip. This quantity is referred to by Maugin
as global material force and it is directly related to the J—integral (Maugin 1993; Dascalu
and Maugin 1995). One of our goal in this paper is to explore an analogous relation start-
ing from the material angular momentum and energy equations. In this case, it is expected
a connection between the configurational moment at the crack tip and the rotational en-
ergy release rate. Such a relation has been provided by (Maugin and Trimarco 1995) for
the case where the defect is a disclination line.

Furthermore, (Golebiewska Herrmann and Herrmann 1981) considered the case of a
stationary crack which rotates and they computed the rotational energy release rate. Also,
(Eischen and Herrmann 1987) tried to connect the conservation (and balance) laws with
the energy release rates and the J, L and M integrals. In these works, a straight stationary
crack is considered and the rotational energy release rate emerges by a virtual rotation of
the crack around its center. Although this is a very successful and meaningful manipula-
tion (in the sense that the associated conservation law is coming from the invariance of
the action functional under the group of rotations), it can not be related to a real situation
of a propagating crack.

Looking for a more physical interpretation, the propagation of a crack along a curve of
arbitrary curvature is considered in such a way that the linear and the angular velocity of
the crack tip to be inserted. The balance laws are postulated and from the localization pro-
cess the configurational fields at the crack tip naturally arise. Finally, these quantities are
correlated with the energy release rates and the J and L integrals of fracture mechanics.

Although the crack propagation in a deformable body is a dissipative phenomenon, in
this paper no mention is made to the second law of thermodynamics and to the subsequent
discussion about constitutive relations.

In Section 2, some preliminaries concerning the proper kinematics for a cracked elas-
tic body are presented. In Section 3, an abstract balance law is postulated, the conditions
under which it is meaningful are examined and its consequences are extracted rigorously.
The application of this procedure to the physical and configurational fields, related to the
problem under study, is made in Sections 4 and 5, respectively. Finally, in Section 6, the
obtained results are used to derive the relations between the energy release rates and the
configurational fields at the crack tip.

2 PRELIMINARIES

Let B, be the reference configuration containing a crack which is described by a smooth,
non-intersecting curve Cr with the one end point to lie on the boundary of the body and
the other one to be the crack tip, Z,. We consider that the crack evolves, not necessarily
in straight direction, following the “motion” of the crack tip within the body. Thus at the
time ¢, the crack is represented by a smooth curve C(t) belonging to a material configu-
ration B;, t € I C IR, where I denotes a time interval. The only difference between the
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reference configuration Br and the material configurations B; lies in the different curve
they contain. Certainly, it is required for ¢; > #2 to imply C(t2) C C(t1).

We focus now on the end point of the crack at time ¢, Z(t). We consider that Z(%) is a
smooth, time dependent mapping, hence its derivative

_az
T dt

provides the propagation velocity of the crack. Also, if we denote with t the tangent vector
to the crack curve, we can write V= V't.

Taking the standard view of fracture mechanics, we consider a disc of radius € centered at
the crack tip Z(t) for any time ¢, denoted by D(%):

v(t) M

D (t)={X€eB;: |X—-Z(t)| <€} (2)
At the time ¢y, the tip disc is given by:
D,={Y€Bg:|Y—-Z <€}

Notice here that D., C Bg and D.(t) C B;. Also, we will denote the part of the crack
curve which lies on D,(t) with yp, i.e., 7p = D.(t) N C(2).

Taking into account the crack tip evolution, we can establish a fictitious motion of the tip
disc (Fig.1) in the following form

X=X(Y,t), Xe€D.t), YED.,, tel 3)

Without any loss of generality, we assume that this "motion” is a rigid one (Gurtin 1981)
and particularly, it is a simple translation which follows the crack tip evolution, that is

X(Y,t)=Y+Z(t) —Zy, forall Ye D,,. 4
It is obvious that every point of D., “moves” with the velocity of the crack tip, i.e.,

V(Y,t) = %(Y, £) = % =V(t), forall Y € D,,. Q)

Figure 1: The motion of the tip disc
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Consider now the physical motion
x=x(X,t), x€B;, XeB,telCKR, {6)

which is twice-differentiable for all (X,t) € (B; \ C(¢)) x I. Also, it is continuous along
the crack curve C(t) \ Z(t), as we assume that the crack faces are in perfect contact. We
observe that the material points X € D.(t) depend on t via the mapping X, while the
material points X € B; \ D.(t) do not depend on ¢. Consequently, we can compose the
mappings X and x for all X € D,(¢) to interpret both the crack evolution and the motion
of the body in the physical space (Fig. 2). Note that this composition holds only for those
X that belong to D, (t) at the time . As a result, we can write for all X € D,(t)

X=xoX, x:i(Ytt)=X(X(Y1t)vt)7YeD€0' (7)
The partial derivative of ¥ with respect to time will be denoted by x and the following

chain differentiation will hold

°o aX oX aX
X= 3_X(X’ t) E(Y’t) + E(X’ t), forall Xe D(t)\vp. 8)
While for all X € B, \ D.(t) away from the crack, it holds
o 8)(
=
Denoting, as usually, with F(X,¢) = 9x(X,¢)/0X the deformation gradient and taking
into account eq. (5), the equation (8) takes the form

(X,t), forall X & B;\ D(t).

x=F(X,t)V(t) + x(X,t) = V(X,¢), forall Xe& D.(t)\"p, 9)

where x(X,t) = 0x(X,t)/0t. Note that, from the above assumptions about the smooth-
ness of z, we have that F(X, ¢) and x(X, ) are continuous for X € D,(t) \ vp. However,
both F and x are singular at the crack tip Z(t).

B,

Figure 2: The total motion
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The quantity ff'(X, t) represents the velocity of the deformed tip disc accounting for the
crack evolution velocity as well. Though V(X ) is defined with the aid of the fields F

and x which are singular at the crack tip, we would like V to be smooth at the crack tip.
Thus, taking the view of (Gurtin 2000, Gurtin and Podio-Guidugli 1996), we assume the
existence of a bounded, time—dependent function U(t) such that

lim V(X,t) = U(¢), uniformlyin I. (10)

X—Z(t)
Notice that the quantity U(t) represents the velocity of the deformed crack tip.

3 AN ABSTRACT BALANCE LAW FOR A CRACKED BODY

Let 2 be any smooth domain of the body in the material configuration ;. If the crack tip
Z(t) is an interior point of (2, then there exists a radius e such that D(¢) C . In this case,
we will denote with {2, the subset of {2 which is defined as follows (Fig. 3),

§1.18) = O\ DiE) or 1} =00{t) LLD.(E). (11)

Notice that 99, = 92 U 8D (t). Also, the parts of the crack C(¢) contained in €2, and 2
will be denoted by -, and vy, respectively , that is

Ye=CHNQ®E), 7yo=CE)NN

In standard continuum mechanics, one has the freedom to formulate a global balance
law either in the reference configuration or in the current configuration. In the proposed
framework, there are three distinct configurations (Fig.2). We work on a material con-
figuration By, in which all the relevant fields should be defined. Let ¢(X,t) be a scalar
valued function defined in B;, representing some physical quantity, sufficiently smooth
away from the crack tip and up to the crack C(t) from either side, thus we let ¢ to have a
singularity at the crack tip and to be discontinuous with finite jump along C(¢) \ {Z(¢)}-

B,

Figure 3: A domain €2 containing the crack tip

77



Taking the view of (Gurtin 2000), we will assume the integrability of ¢ in the sense of
Cauchy principal value, i.e. for all 2 € B;

f #(X,t) dA =1lim / #(X, ) dA. (12)
Q e—0 Q.

Analogously, it holds for the line integral of a vector valued function g(X,t) along the
curve g in the sense

/ g(X,t)-ndl:Iin%-/ g(X,t)-ndl, (13)
T Ve

where n is the unit normal to C(t). Hereafter, when we refer to the integrability of any
function over (2 and g, it will be meant in the sense of egs. (12) and (13).
Next, we consider a global balance law for the quantity ¢ of the form

d
2 fn $(X,1) dA = fa f(X,1)-NdS+ L B(X,?) dA+ g(t), (14)

where N is the outward unit normal to the boundary 952 and f and h, are the flux and the
source of ¢, respectively. The time dependent function g represents the source of ¢ due to
the crack evolution.

It is apparent that the integrability of ¢ is not enough to make eq. (14) meaningful. So, we
must pose extra smoothness on the integrands. Denoting with [f] the jump of f across the
crack, we assume the following conditions

Cl h, ¢ are integrable over (2.

o¢
X,t) dA,
c2 11 f B (X,t) dA = &( i) uniformly in 7.

Cc3 &(X,t)(V-N)dS converges uniformly in [ as € — 0.
aD.

C4 Divf, [f]-n are integrable over Q2 and ~q, respectively.
C5 f f(X,t)-NdS converges to a time dependent function as € — 0.
9D,

One can prove the following statement (Agiasofitou and Kalpakides 2003)
Assume that the Conditions 1, 2 and 3 hold. Then, [, ¢(X,t) dA is a differentiable func-
tion of t. In addition, its derivative will be given by the relation

/qb (X,t) dA = hm (j (X, ) dA) (15)

The transport theorem and the divergence theorem for any domain £2., can be written,
respectively

d [ sx0)aa= / 06X ga— [ sx,8)(V-N) ds (16)
dt aDE
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and
/Divf(X,t) dA=/ £X,4)-NdS— [ £(X,)-NdS
e a0
+ [ [8(X,8)]-ndl. a7
[%[( ) -n

Using the Conditions 1-5 and the egs. (16)-(17), one can prove the following versions for
the transport theorem and divergence theorem appropriate for the problem under study
(Agiasofitou and Kalpakides 2003)

d _ [99 1y .
- fﬂ $(X,1) dA = /g X naa-tm [ oxnv-Nas  ay

and

f f-NdS = ]DlvfdA—Hzm (X,t)-NdS—/ f(X,t)]-ndl.  (19)

9D,

Inserting egs. (18) and (19) into eq. (14), we obtain
09(X, .
]Q (% —Div (X, %) — h(X, t)) dA+ j;g [f(X,?)] -mdl—

lim [ ($(X,)(V-N)+£(X,2)-N) dS — g(t) = 0, (20)
8D,

for all 2 containing the crack tip.
We remark that in the case where {2 does not contain the crack tip and any part of the
crack, eq. (20) takes the simpler form

/ﬂ (?_?%%ﬂ — Div f(X, £) — h(X, t)) dA=0. (21)

Thus, due to the arbitrariness of {2, we conclude that

8¢g§ Y _ Divi(X, 1)~ h(X,t) =0, forall t€ I, XeB\C({H).  (22)

Similarly, we can consider 2 containing a part of the crack apart from the crack tip. In
this case, the global balance law (eq. (20)) takes the form

/ (‘%’(X’ Y _ piv (X, 1) — h(X,t)) dA + f f(X,6)]-ndl=0.  (23)
Q ot o

However, [, (0¢(X,t)/0t — Div f(X,t) — h(X,)) dA = 0, because its integrand is zero
almost everywhere due to eq. (22), i.e., it is zero everywhere apart from the crack line g,

which is a set of measure zero in (2. Consequently, eq. (23) gives

f(X,£)] -ndl =0, (24)

is}
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for all o which do not contain the crack tip. Thus, we obtain
f(X,#)]-n=0, forall teI, XeC(t)\{Z(t)}. (25)

In the same line of argument, we consider arbitrary §2 which contains the whole crack.
In this case, we must use the complete form of eq. (20). Taking into account the results
provided by egs. (22) and (25), we remark that the integrands of the first two terms of eq.
(20) vanish almost everywhere in any ), and any ., respectively, thus we can write

f c (84""%’2 — Div f(X, ) — h(X, t)) dA=0,

f [£(X,2)] -n dl = 0,

Ye

foralle > 0.
Thus, recalling the sense of integrability given by egs. (12) and (13), we conclude that
/ (@(X—’t) — Div f(X,t) — h(X, t)) dA =0, (26)
Q ot
/ (X, 4)] - m dl = 0, @7
T

for all 2 and yq, even they contain the crack tip. Finally, we obtain the localization of the
balance law at the crack tip as follows:

gt)=— Iiné (6(X,)(V-N) +£(X,t) -N)dS, forall tel. (28)
<=0 Jap,
To sum up, the requirement that the balance law (14) holds for all €2 € I3, implies the local
equations (22), (25) and (28), that is,
d¢

5 —Divf—h=0, forall te ], XeB\C(),

[f]-n=0, forall te I, X e C(t) \{Z(t)}, (29)
glt) = —]jm/ (6(V-N) +£f-N)dS, forall ¢ € 1.
e—0 8D,

4 BALANCE LAWS IN THE PHYSICAL SPACE

Throughout this and the next section, we assume that each field inserted in a global bal-
ance law at the position of the abstract functions @, f and h will enjoy the corresponding
smoothness specified in the previous section.

4.1 The balances of mass, momentum and angular momentum

We assume that there are no sources of mass, momentum and angular momentum, due
to the crack evolution. Thus, we accept that, apart from the energy, the crack evolution
does not intervene directly in the balance of the physical fields. Nevertheless, we expect
a new relation at the crack tip due to the singularities of the physical fields. We denote
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with p and T the mass density in the material configuration and the Piola-Kirchhoff stress
tensor, respectively. Also, the position vector of x is denoted with r = X — 0 . As in the
standard continuum mechanics, it is postulated that the mass, the momentum and the
angular momentum fulfil the following relations

d
) A= 30
= fn p(X,t) dA =0, (30)
d [ .
— [ pxdA= | TNdJS, €Dy
dt Q (519
i/rxpdi=f (r x T)N dS, (32)
dt Q axk

for every part  of B; and for every ¢ in some interval I.
The local form of the balances (30-32) outside the crack are extracted from eq. (29);

dp(X,t)

2 0= 5= p(), (33)
g—t(pi) — DivT = 0, (34
%(r x px) — Div(r x T) =0, 33)

forallt € I, X € B, \ C(2).
Moreover, the localization process gives the following jump conditions (see eq. (29)2)
along the crack curve

[TIn =0, (36)
[r x Tln =0, (37

forallt € I, X € C(t) \ {Z(t)}. The above local equations and jump conditions do not
differ from the corresponding ones holding for any smooth elastic body with a material
surface of discontinuity within it. Recalling that the motion x(X,¢) is continuous along
the crack C(t) (hence, r is continuous as well), we easily conclude that the condition (37)
follows from the jump condition (36).

The new results of the proposed approach concern the relations holding at the crack tip
are derived from(29); as follows

lim p(V-N)dS =0, (38)
e—0 8D,
im (px(V-N)+TN) dS =0, (39)
e—0 aD.
lim r x (px(V-N)+TN) dS =0, (40)
=Y JaD,

forallt € I.
Equation (38) shows that the rate of mass flow through 9D, vanishes, when the boundary
shrinks onto the crack tip. Egs. (39) and (40) represent the balance of linear momentum
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and angular momentum at the crack tip, respectively. Adopting the standard momentum
condition of (Gurtin 2000), that is,

lim PXQ®N IS =0,
e—0 8D,

we take from eq. (39)

lim px(V-N) dS =0, hm TN dS =0.
<=0 J9p, 8D,

4.2 The balance of Energy

Unlike the balances for mass, linear momentum and angular momentum, we assume that
the balance of energy is directly influenced by the crack growth. This is quite reasonable
because the crack propagation is a dissipative phenomenon, that is to say, the growth of
the crack consumes a part of the energy given by the applied forces. Hence, an energy
source term describing the total dissipation rate of the body, denoted here by ®(t), must
be added in the energy balance. Thus, the global balance law for energy can be postulated

d

dt_/(W+K)dA TN-xdS—®, forall tel, QebB,, (41)
ET9)

where W is the elastic energy density and K is the kinetic energy density, both are defined

per unit volume in material configuration.

Localizing eq. (41), we obtain (see eq. (29))

%(W+K)—Div(rﬂ"i)=o, Viel, XeB\C), 42)
[T7x]-n=0, Vte I, Xe Ct)\{Z(®)}, (43)
—_Ilm/ (W+K)(V-N)+T7x-N)dS, Viel (44)

It is obvious that egs. (42) and (43) are the local energy equation and the associated jump
condition along the crack, respectively. Also, eq. (44) is the energy flow out of the body
and into the crack tip per unit time and if it be divided by the crack propagation velocity V,
it will give the well-known, in fracture literature (Freund 1981), dynamic energy release
rate G, i.e.,

G=92/V. (45)

5 BALANCE LAWS IN THE MATERIAL SPACE

The balances which we are dealt with in the last section do not exhaust all the relevant
quantities involved in our problem. We must further consider balances for the configura-
tional fields, that is, the pseudomomentum and the material angular momentum.

5.1 The balance of pseudomomentum
We introduce now the pseudomomentum (or material momentum)

P(X,t)=—pF %, tel, X B\ C(2), (46)

a quantity analogous to the physical momentum, concerning changes within the material
structure. In a Hamiltonian framework, the pseudomomentum is the dual quantity to the
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velocity of the inverse motion function, like the physical momentum is the dual of the
standard velocity of the body (Maugin and Kalpakides 2002). The contributors to the bal-
ance of pseudomomentum will be the material or configurational forces (Maugin 1993).
Considering both at a distance and at contact configurational forces, we introduce the
configurational body forces f (source term) and the configurational stress tensor b (flux
term), respectively . Moreover, we consider a pseudomomentum source term, that is a ma-
terial force, F = F(t), produced by the crack evolution. After all these considerations,
we postulate the balance law for the pseudomomentum

i/’PdA=/ bNdS+f?dA+f,VteI,VQeBt. 47)
dt Jo an Q
The local equations, obtained by eq. (47), are given (see egs. (29)) as follows
oP . =
—B?—Dlvb—fxo, vtel, Xe B \C(t), (48)
bm=0, Vtel, Xe C(t)\{Z()}, (49)
F = —lim (P(V-N)+bN)dS, Vtel. (50)
Y JeD.

Eq. (48) is the equation of pseudomomentum, which holds in the smooth part of the body
and eq. (49) is the associated jump condition. In addition, eq. (50) represents the material
force at the crack tip, which drives the crack evolution. Thus, the quantity F should be
directly related to the energy release rate, G. Also, in the static case it holds the following
relation

F=- 11_1:.% J(e),

where J is the well-known J -integral of Rice (Budiansky and Rice 1973).

In the absence of a crack or any other rearrangement in the material configuration, the last
term in the pseudomomentum balance law vanishes and eq. (48) holds all over the body
as a simple identity for the solution of the standard elastic problem. In other words, egs.
(48-50) do not make sense in the standard continuum mechanics, where only the motion
in physical space is considered. Thus, the balance law (47) must be considered when one
studies any kind of evolution of structural defects. From this point of view, it is a config-
urational balance law.

Remark 1: One can enrich the balance law (47) by considering an additional term of the
form [ g dl, accounting for configurational forces acting along the crack curve (Gurtin
2000). In that case, the localization process provides

[bIn+¢' =0,
instead of eq. (49).

Remark 2: The flux term b, like the Piola—Kirchhoff stress tensor in standard continuum
mechanics, needs a constitutive relation to be further determined. Because the constitutive
relations are out of the scope of the present procedure, we adopt without reasoning the
relation

b= (W—%pﬁz)I—FTT, (51)
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that is, the Eshelby stress tensor for the dynamical case (Eshelby 1995). For the derivation
and a discussion about this relationship, viewed as a constitutive relation, we refer to the
works of (Gurtin 2000) and (Podio-Guidugli 2002). As concerns the term f, we consider
it as a distributed body material force, produced by the material inhomogeneities (Maugin
1993). Moreover, the pseudomomentum source term F, produced by the crack evolution,
is referred to by (Maugin 1993; Dascalu and Maugin 1995) as global material force and
by (Gurtin 2000) as fip traction.

5.2 The balance of material angular momentum

We proceed to the balance of the material angular momentum, that is, the moment of
pseudomomentum, R x P, where R = X — 0 is the position vector of X. The rest con-
tributors to this law should be the moment of material contact and material body forces.
Moreover, we consider a material angular momentum source term, M = M(t) due to
the presence of the crack. We postulate:

i/Rx‘PdA= RbedS—t—_/in’dA—l—fgdA—l—M,
dt Jo 80 Q Q

Vtel, V2 € By, (52)
where g(X, %) is a vector field describing the distribution of material couples within the

body.
The localization of eq. (52) provides

va—(Bg;—a—Div(Rxb)—in'—g=0, vtel, XeB\C), (53)
M=—1m%f (Rx (P(V-N)+bN))dS, Vtel (54)
Y JaD.

and the associated jump condition
Rxbn=0, Vitel, VXeCt)\{Z({®)},

which holds identically due to the continuity of X and the jump condition (49).

Eq. (53) is the equation of material angular momentum, which holds in the bulk of the
body. If f = 0 and g = 0, then it coincides with the corresponding one of (Golebiewska
Herrmann 1982).

If we take into account the equation of pseudomomentum (48), then eq. (53) gives the
following relation

g = axlb or ga — —eABcbgc, (55)

where axlb denotes the axial vector of b (Chadwick 1976). Finally, eq. (53) 1s written as
follows

IR xP)
ot

which is in accordance with the corresponding one of (Steinmann 2000) for the static case.

—Div(Rxb)—Rxf—2axlb=0, Vt€ I, X€ B\ C(t), (56)
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Remark 3: If the material is homogeneous and isotropic, then the Eshelby stress ten-
sor b is symmetric (Steinmann 2000; Kalpakides and Agiasofitou 2002), which means
that axlb = 0, so eq. (55) gives g = 0.

Remark 4: Adopting the existence of configurational forces distributed along the crack
curve as we did in Remark 1, we obtain the jump condition

[Rxbjn+Rx g =0.

Furthermore, equation (54) gives the form of the configurational moment M at the
crack tip. Particularly,
M(t) = —imM.(t), Vi e,

e—0
where

M, (t) = fa N (R x (P(V-N) +bN)) dS. (57)

The physical interpretation of M., and its possible connection with the L—integral will be
examined in the next subsection.

5.3 The configurational moment and the L—integral

It is worth noting that the Eshelby stress tensor used in fracture mechanics literature differs
from the one used here. In fracture mechanics, the tensor b is defined with the aid of the
displacement field u(X, t), whereas in our analysis it is defined with the aid of the motion
mapping x(X, t) (see the relation (51)). If we introduce in eq. (51) the displacement field
u, we take

1 1 "
b=(W-— —2—,0X2)I —FIT= (W — E,91‘12)1 — (Vo)'T 17T,

where I denotes the two point unit tensor (or the shifter ;4 in a coordinate system). Then,

we can write 3
b=b*—-I'T, (58)

where

bY = (W — %pﬂz)l — (Vu)'T.

Notice that using b* instead of b in pseudomomentum equation and neglecting the con-
figurational body forces f, we obtain, in virtue of eq. (34), an equation of the same form

U

ot

— Divb* =0,
where
P = —p(Vu) i (59)

However, under the same manipulation the material angular momentum equation does
not retain its form. Indeed, inserting egs. (58) and (59) into eq. (53), neglecting f, g and
taking into account the equation of angular momentum, i.e. eq. (35), we obtain

%(Rx‘P“+uxpi1)—Div(Rxb”+uxT)=O. (60)
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Consequently, eq. (60) must be used in any comparison of the present results with the
corresponding ones in the linear fracture mechanics. Indeed, if R and T are replaced by
the spatial coordinates x and the Caushy stress tensor o, respectively and p and W are
defined per unit deformed volume, then eq. (60) coincides with the corresponding one of
(Fletcher 1975), for a linear, homogeneous and isotropic elastic body in the absence of
body forces.

In addition, doing the same replacements in the integral given by eq. (57), the latter be-
comes

MJt)=/{;D (RxP*+uxpi)(V-N)+(Rxb*+uxT)N)dS  (61)

In the static case, apart from the contour of integration, the integral M, reduces to the
L—integral, as it was given by ( Knowles and Sternberg 1972) and (Steinmann 2000) for a
nonlinear, homogeneous and isotropic elastic material. Therefore, an integral having the
same integrand with A, along an integration path encircling the total crack can be con-
sidered as a generalization of L—integral in the dynamical, non—linear case. It is important
to remark that, in fracture mechanics literature, the path of the L—integral includes the
whole crack, while in our analysis the path 6D, is limited around the crack tip. This, on
the one hand, justifies the term ”configurational moment at the crack tip” and on the other,
provides possibly an alternative physical interpretation of M and M. More specifically,
one can conjecture that the quantity M is related to the tendency of the crack tip (and as a
result of the crack) to turn, while the usual interpretation (for instance, see (Golebiewska
Herrmann and Herrmann 1981)) of the L—integral concerns the tendency of a stationary
straight crack to rotate, as a whole, with respect to its center.

6 THE ENERGY RELEASE RATES AND THE CONFIGURATIONAL FIELDS

In this section, expressions for the energy release rates will be derived. Particularly, the
relationship between the dynamical energy release rate with the configurational force at
the crack tip as well as the relationship of the rotational energy release rate with the
configurational moment at the crack tip, will be established.

6.1 The energy release rate and the configurational force
We start with the expression for the rate of energy dissipation, i.e., eq. (44):

® = lm [ [W+EK)(V-N)+T%x-N]ds
=Y J oD,

= lim [ [(W—-K)(V-N)]dS+1lim / x| px(V - N) + TN]dS.
e—0 8D,

e—0 aD.
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Recalling relation (9), the above equation can be written as

& = lim [ [(W—K)(V-N)—FV(px(V-N)+TN)]dS

e—0 aD.
+lim [ V-[px(V-N)+1TN]dS
e—0 8D,
= lm /[ V- [(W—K)I-F'T)N—pF'x(V-N)] dS
Y JoD,

+lim [ V-[px(V-N)+TN]dS.

e—0 8D,
Due to egs. (46) and (51), eq. (62) becomes

d=1lim [ V-[bN+P(V-N)dS
e—0 6De

+lim V- [px(V-N)+ TN] dS.
e—0 8D.

(62)

(63)

One can prove that under specific assumptions the second term in eq. (63) vanishes. The

essential step to this end is to prove the following

Proposition: Assume that
/ |px(V -N)+TN|dS, isboundedas €— 0.
8D,
Then the following convergence holds
lim [i"r(x, £) — ﬁ(t)] -[pX(V -N) + TN] dS = 0.
e—0 aD.
PROOF: We have
] [VX,2) ~ T(t)] - [px(V - N) + TN] ds]

< f sup |V(X, ) — U(¢)| |px(V - N) + TN| dS
8D, tel

< sup (Té? IV(X,t) — ﬁ(t)]) /a N |px(V - N) + TN|dS.

On the other hand, the condition given by eq. (10) means that

lim (su \N/'X,t —U@R)|) =0.
Jim (sup [V(X,6) - T())

(64)

(65)

(66)

From this convergence, taking into account that the boundary 3D, shrinks onto Z(t) as

€ — 0, it is implied that the following convergence holds as well

lim ( sup (sup|V(X,t) — ﬁ(t)|)) =0.

—0 \ XedD, tel
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The latter jointly with the assumption (64) gives

lim [ sup (Sllp IV(X,1) ~ﬁ(t)|) f |px(V -N) +TN|dS| =0,
€0 |XeaD, \ tel 8D

which, in virtue of inequality (66), completes the proof.

Next, from eq. (65) invoking the balance of physical momentum at the crack tip i.e., eq.
(39), we conclude that

lim V(X,t) - [px(V -N) +TN] dS
=Y JéD.

=lim | U()-[px(V-N)+TN]dS = 0. 67
e—0 aD.

Therefore, taking into account eq. (67), the energy flux at the crack tip, i.e., eq. (63)
becomes
®=V-lim [ (bN+7P(V-N))dS
e—0 8D
or, due to eq. (50),
®=-V-F. (68)

Using the definition (45) for the energy release rate, eq. (68) gives the following result
G=-F-t, (69)
which confirms that the energy release rate G is the crack driving force.

Remark 5: In the preceding analysis, two relations, which can be viewed as constraints
on the singularity order for the velocity and the stress fields at the crack tip, have been
arisen. These relations are the condition (64) and the equation (39). Suppose that the in-
dependent variables of a function f(X,¢) (say f be the velocity or the stress tensor) can
be separated as
f(Xs t) = g(?‘)h(ﬂ,t),

where r = |X — Z(t}| and @ are the distance and the angle, respectively, in a polar coor-
dinate system with its origin at the crack tip. Then, assuming that g(r) = O(r?), p > —1
is sufficient to assure that the condition (64) holds. Furthermore, assuming that g(r) =
O(r?), p > —1, we obtain that eq. (39) holds, as well. However, it is well known that
for a linear elastic, cracked body, both the near tip velocity and stress fields are of order
O(r—%) (Freund 1981).

6.2 The rotational energy release rate and the configurational moment at the crack tip

In this section, we will show that a relationship between the rotational energy release rate
and the configurational fields at the crack tip can be established. We start with the relation
(57) which can be written as

M =—lim R x CN dS, (70)
=0 Jap,
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where
C=PQV+b’. (71)

Considering that the crack evolves along an arbitrary smooth curve, we introduce the

angular velocity of the crack tip
w(t) = wm, (/12)

where m = t x n is the unit normal vector to the plane of the crack. Furthermore, denoting
with a = @ n the instantaneous radius of curvature (n the unit normal to the curve), we
can write

w=—. (73)
a

Also, we denote with R; = Z — 0 = Rze the position vector of the crack tip. Then, we
can write (see Fig.4)
Rz=R+¢€, e€=—ceN.

Therefore, the configurational moment M becomes

= —lim / (Rz x CN) dS +lim / (e xCN) ds. (74)
8D, 8D,

One can prove that the last term in eq. (74) vanishes under a particular condition. Indeed,

/ (exCN)dS=—f (eNxCN)dS = —ef (N x CN) dS.
8D, 8D oD,

In addition, it holds
[ f (N x CN) dS| < / (IN| x |CN}) dS = f |CN] dS.
D 8D. 8D,

Thus, assuming that the integral [, |CN| dS is bounded as € — 0, we obtain that the

integral [, (e x CN) dS vanishes as € — 0.
Consequently, the expression for M (eq. (74)) becomes

=—11mf (Rz x CN) dS = —Rz x (hm
8D,

e—0

CN dS) (75)
8D,

Notice that using the relation (71), the quantity F is written
F =—lim CNdS.
6—70 aDe

So, M is given by the following simple formula
M=Rz x F, (76)

which confirms the term configurational moment at the crack tip, since, essentially, it is
the moment of the configurational force at the crack tip.
In addition, if 6 is the angle from the t-axis to the e-axis, then M is written in terms of
F as follows

M= RZ( cosf (F -n) —sinO(F - t))m. (77)

89



0

Figure 4: Some geometrical characteristics of the crack

Next, we calculate the product
w - M =wRz( cosf (F -n) —sin8(F - t)) (78)

in order to take an expression for the rate of dissipation in terms of the configurational
force and the configurational moment at the crack tip

_ a
" Rysiné

Furthermore, if we denote with

(w- M) —Vcotd(F -n). (79)

G (80)
[63)

the rotational energy release rate, that is, the energy flow into the crack tip per unit angle

extension of the crack, then from eq. (79) we have

G, = (w- M) —acotd(F -m). (81)

a
stine

Remark 6: Assuming that Z(t) is a C? function, the instantaneous radius of curvature at
Z(t) is related to the instantaneous curvature at Z(t) by a = I_;;T and

dz, 2
WZIEX% _ [V xA]

Zp T VP

(82)

where A = d2Z/dt? is the acceleration vector of the crack tip. Therefore, we can write ®
(eq. (79)) in the following alternative form
V2

5
RzAn sin @

(w- M) —Vcotf(F -m), (83)
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where A, is the normal component of the vector A.

Remark 7: In the case in which the crack is circular and the origin of the coordinates’
system coincides with the center of the circle, the formulas (79) and (81) give

d=—w-M, G=M-m=M. (84)

We can see from eq. (84), that the rotational energy release rate is simply the magnitude
of the vector of the configurational moment at the crack tip. Analogous results to eq. (84),
have been provided by (Maugin and Trimarco 1995) as well as by (Budiansky and Rice
1973) for disclinations and cavities, respectively. Of course, someone can easily see the
analogy between the relations (68), (69) and (84);, (84)., respectively.

7 CONCLUSIONS

The objective of this paper was the study of the crack propagation within an elastic
medium in the context of configurational mechanics. To this end, we proposed an ap-
propriate kinematics and we formulated the corresponding transport and divergence the-
orems. In the sequel, we produced a rigorous localization process which has been used to
derive the local equations for both the physical and configurational fields.

A significant consequence of the localization process was the expression for the con-
figurational force at the crack tip related to the J—integral as well as the corresponding
one for the configurational moment at the crack tip which is related to the L—integral.
Based on these expressions, we derived a relationship between the configurational force
at the crack tip and the energy release rate, as well as a relation connecting the rotational
energy release rate with the configurational moment and force at the crack tip.

In the case of a crack with non constant curvature, the rotational energy release rate
depends essentially on the geometrical characteristics of the curve. Therefore, in order
to apply the formula (81), the geometrical characteristics of the curve along which the
crack will evolve should be a priori known. Such situations appear in delamination cracks,
where the crack necessarily follows a particular curve.
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